Investigation on Some Bacterial and Fungal Causes Respiratory Infections in Egyptian Buffalloes

نوع المستند : المقالة الأصلية

المؤلفون

1 Buffaloes Diseases Res. Dept., Animal Health Research Institute (AHRI), (ARC)

2 Serology Unit and Bacterial Strains Bank, Animal Health Research Institute (AHRI), (ARC)

3 Pharmacology and Toxicology Dept., Vienna University, Vienna, Austria

4 Bacteriology Dept., Animal Health Research Institute (AHRI), Mansoura Br., (ARC

المستخلص

    Respiratory microbial infections were a major health problems of Egyptian buffaloes and had economic looses in meat and milk production. That caused pneumonia leading to morbidity and mortality  in intensive rearing system. The aim was to study some investigations on some bacterial and fungal causes respiratory infections in Egyptian buffalloes. That were by isolation and identification to detect molecularity and antibiogram sensitivities. The methodology were included samples collection, microbial isolation and identification, antibiogram technique, DNA extraction and PCR amplification protocol for microorganisms. in the present study was conducted to examine 100 nasal swabs of buffalos (1_5 years) reared on private farms at El Dakahlia Governorate showing symptoms of depression, reduced the feed intake, respiratory problems_ dyspnea with or without nasal discharge and pneumonia also 50 mouth swabs collected from mucous discharge of buffalos suffering   from cough and sneezing.  Pasteurella  multocida (p. multocida ), Escherichia coli (E.coli) and Staphylococcus aureus( staph aureus) where isolated in percentage of (12%_7%_5%) from nasal swabs respectively and (8%_4%_4%) from mouth swabs respectively. The  main isolated fungi were Aspergills fumigatus ( A. fumigatus)  and  Aspergillus  flavous (A.flavous) that isolated percentage (11% and 5%) from nasal swabs respectively and (8% and 4%)  from mouth swabs respectively . p. multocida were  sensitive to enrofloxacin, spectinomycin, and trimethoprim-sulfamethoxazole, Multi-Drug Resistance (MDR) to amoxicillin, ciprofloxacin, gentamicin, streptomycin, and chloramphenicol. E. coli were sensitive to ciprofloxacin, enrofloxacin, spectinomycin, and chloramphenicol, had MDR to amoxicillin, gentamicin, streptomycin, and trimethoprim-sulfamethoxazole. Staph. aureus were sensitive to enrofloxacin, and spectinomycin, had MDR to amoxicillin, ciprofloxacin, gentamicin, streptomycin, trimethoprim- sulfamethoxazole, and chloramphenicol. A. fumigatus was sensitive to fluconazole, ketoconazole, nystatin, and amphotericin B, had MDR to clotrimazole. A. flavus were sensitive to fluconazole, ketoconazole, and nystatin, had MDR to clotrimazole, and amphotericin  B.,    The PCR  using the KMT1 gene confirmed P. multocida isolates, developed specific 457 bp molecular size bands. The 16s rRNA gene confirmed E. coli isolates, developed specific 662 bp molecular size bands. The Coagulase gene confirmed Staph. aureus isolates, developed specific 600-1000 bp molecular size bands. The Asphs gene confirmed A. fumigatus isolates, developed specific 180 bp molecular size bands. The aflR1 gene confirmed A. flavus isolates, developed specific 798 bp molecular size bands. It was concluded that the microbial respiratory infection affected farm health. It was recommended for taken animal health precaution for protection from respiratory microbial infection for safe farm health.
 

الكلمات الرئيسية


Aarestrup M, Dangler A, Sordillo M. 1995. Prevalence of coagulase gene polymorphism in Staphylococcus aureus isolates causing bovine mastitis. Canadian Journal of Veterinary Research. 59(2):124.‏
Abbas M, Abd El-Moaty A, Zaki S, El-Sergany F, El-Sebay A, Fadl A, Samy A. 2018. Use of molecular biology tools for rapid identification and characterization of Pasteurella spp. Veterinary world. 11(7):1006.‏
Abdullah N. 2010. Isolation and identification of some bacterial isolates from table egg. J. Veterinary Science. 3(2):59-67.
Abed H, El-Seedy R, Hassan M, Nabih M, Khalifa E, Salem E, Gamal W, Menshawy A. 2020. Serotyping, genotyping and virulence genes characterization of Pasteurella multocida and Mannheimia haemolytica Isolates Recovered from Pneumonic Cattle Calves in North Upper Egypt. Veterinary Sciences. 7(4):174.‏
Algammal M, El-Sayed E, Youssef M, Saad A, Elhaig M, Batiha E, Wael N, Hozzein H, Ghobashy O. 2020. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express. 10(1):1-8.‏
Bahr D, Salib A, Soliman A, Amin A, 2021. Multi-drug resistant Pasteurella multocida and Mannheimia haemolytica strains isolated from different hosts affected by pneumonic pasteurellosis in Egypt. Adv. Anim. Vet. Sci. 9(3):356-364.‏
Choudhary M, Choudhary K, Ghosh C, Bhoyar S, Chaudhari S, Barbuddhe B, 2019. Cultivable microbiota and pulmonary lesions in polymicrobial bovine pneumonia. Microbial pathogenesis. 134:103577.‏
Cruz P. and Buttner P, 2008. Development and evaluation of a real-time quantitative PCR assay for Aspergillus flavus. Mycologia. 100:683-690.
Dennis M. and Allen C, 2006. Setting up a polymerase chain reaction laboratory. In: Dennis Lo YM , Chiu RWK , Allen Chan KC (eds).Clinical Applications of PCR . 2nd edn . New Jersey: Humana Press. Pp:11-18.
Devi B, Bora P, Das K, Sharma K, Mukherjee S, Hazarika A, 2018. Virulence gene profiling of porcine Pasteurella multocida isolates of Assam. Veterinary world. 11(3):348.‏
Elsayed E, Eldsouky M, Roshdy T, Said L, Thabet N, Allam T, Abeer M, Ghada M, Mohamed M, Basiouny B, Behairy A, Maha M, Al Shaimaa H, Salah A, 2021. Virulence determinants and antimicrobial profiles of Pasteurella multocida isolated from cattle and humans in Egypt. Antibiotics. 10(5):480.‏
Esra S. and Hakan Y, 2010. The aerobic bacterial flora of the nasal cavity in healthy Anatolian water buffalo calves. Ankara Univ. Vet. Fak. Derg. 57:65-67.
Farber P, Geisen R, Holzapfe H, 1997. Detection of aflatoxigenic fungi in figs by a PCR reaction. Int. J.  Food  Microbiol. 36:215-220.
Farrag A, Ismail A, Abdel-Razek A, Ali A, 2012. In vitro antifungal effects of some chemotherapeutic agents against fungi commonly isolated from repeat breeder animals. Journal of  Basic & Applied Mycology. 3:13-19.‏
Gajdács M. 2019. The concept of an ideal antibiotic: Implications for drug design. Molecules. 24:892.
Gharibi D, Haji R, Ghorbanpoor M, Barzegar K, 2017. Isolation, molecular characterization and antibiotic susceptibility pattern of Pasteurella multocida isolated from cattle and buffalo from Ahwaz, Iran. Archives of Razi Institute. 72(2):93-100.‏
Gündüz M. and Asan K, 2021. GEOstats: An excel-based data analysis program applying basic principles of statistics for geological studies. Earth Science Informatics. Pp:1-8.
Hassan A, Abo-Zaid F, Oraby H, 2020. Molecular and conventional detection of antimicrobial activity of zinc oxide nanoparticles and cinnamon oil against Escherichia coli and Aspergillus flavus. Adv. Anim. Vet. Sci. 8(8):839-847.‏
Hassan A, Howayda M, Hanan M, 2017. Antimicrobial Potential of Ozone on Fungal and Bacterial Contamination of Animal Feed That Caused Diseases in Some Buffalo Farms.‏1st Int. Conference, Animal Health Research Institute, ARC, Egypt, 9-13 Nov. 2017; Pp:100-120.
Hassan A, Noha A, Oraby H, Aliaa E, Mohamed A,  Mahmoud H, 2014. The possibility of using Zinc oxide nanoparticals in controlling some fungal and bacterial strains isolated from buffaloes. Egypt . J.  Appl. Sci. 29(3):58-83.
Ismail M, El-Jakee N, Attia A, Bagwaata S, 1993. Bacterial cause of respiratory disorders in buffalo-calves in Egypt. Vet. Med. J. Giza. 41:95-99.‏
Johnson G. 2014. Development of Novel Methods for the Diagnosis of Invasive Pulmonary Aspergillosis (Doctoral dissertation, Queen Mary, University of London).‏
Kiakojuri K, Omran M, Roodgari S, Armaki T, Hedayati T, Shokohi T, Iman H, Javad J, Firoozeh K, Hamid B, Abastabar M, 2021. Molecular Identification and Antifungal Susceptibility of Yeasts and Molds Isolated from Patients with Otomycosis. Mycopathologia. 186(2):245-257.‏
Levin E. 2012. PCR detection of aflatoxin producing fungi and its limitations. International journal of food microbiology. 156(1):1-6.‏
Nieuwenweg C, Trump D, Klasa K, Bleijs A, Oye A, 2021. Emerging Biotechnology and Information Hazards. In Emerging Threats of Synthetic Biology and Biotechnology (Pp: 131-140). Springer, Dordrecht.‏
Nyongesa W, Okoth S, Ayugi V, 2015. Identification key for Aspergillus species isolated from maize and soil of Nandi County, Kenya. Advances in Micro. 5(04):205.
Page W. and Gautier P, 2012. Use of antimicrobial agents in livestock. Revue Scientifique et Technique-OIE. 31(1):145.
Reddy S. and Subramanyam V, 2018. Clinico-diagnostic studies on bacterial pneumonia in buffaloes. Buffalo Bulletin. 37(3):329-342.‏
Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagacé J, 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol. 39(7):2584-9.
Sayed S. and Zaitoun A, 2009. Aerobic bacterial pathogens of pneumonic feedlot buffalo-calves, in Assiut Governorate, Egypt. Ass. Univ. Bull. Environ. Res. 12(1):March.
Sayed H,  El Ahl R, Dahshan E, HM Y, 2014. Study on Some Mycological, Mycoplasmal and Bacteriological Causes of Pneumonia in Cattle. Zagazig Veterinary Journal. 42(3):198-207.‏
Townsend M, Boyce D, Chung Y, Frost J, Adler B, 2001. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 39(3):924-929.
‏Uerlings S, Welter V, Madea B, Grabmüller M, 2021. Comparative analysis of DNA extraction processes for DNA-based identification from putrefied bodies in forensic routine work. Forensic Science International. 320:110707.‏
Zakaria M, Mohsen M, Dapgh N, 2013. Effect of climatic factors on respiratory affections in buffaloes calves caused by Pasteurella multocida. In Proceedings of the 6th Scientific Conference of Animal Wealth Research in the Middle East and North Africa, Hurghada, Egypt, 27-30 September 2013 (Pp:329-348). Massive Conferences and Trade Fairs.